Artículo | 21 Jun, 2013

Global natural World Heritage coverage — the gaps identified

A new IUCN report identifies ‘gaps’ in the World Heritage List. The study also represents the first global effort to identify the most irreplaceable sites of outstanding biodiversity values for species conservation that may merit inscription on the prestigious list.

content hero image

Photo: Juriah Mosin/

The World Heritage List includes 156 sites that are explicitly recognized for their outstanding biodiversity values. They span 72 countries across all continents except Antarctica and represent all of the world’s major ecosystems.

‘Biodiversity World Heritage sites’ are generally very large protected areas such as Australia’s Great Barrier Reef, the Cape Floral Region of South Africa or India’s Western Ghats. They cover a land area of 1.1 million km2 - nearly 0.8% of the global land surface.

But there are still areas with outstanding biodiversity values that are not yet part of this network and these are outlined in the report Terrestrial Biodiversity and the World Heritage List: Identifying broad gaps and potential candidate sites for inclusion in the natural World Heritage network. The study is released during the annual UNESCO World Heritage meeting taking place in Phnom Penh, Cambodia this week.

It updates the previous study on the biogeographic coverage, and the representation of biodiversity World Heritage sites on the global conservation priorities such as Biodiversity Hotspots, high-biodiversity wilderness areas, the Global 200 terrestrial priority ecoregions, Centres of Plant Diversity and Endemic Bird Areas to assess the 156 sites and identify broad gaps. It also identifies the most irreplaceable protected areas that may merit World Heritage listing and evaluates how these can help to fill the broad gaps.

Gaps in the coverage of global biodiversity conservation priorities include areas in the mountains of Central Asia, southwest Arabian Peninsula, and mountain, forest and desert areas in the southwest of North and South America. Broad ‘biogeographic’ gaps include Oceania, temperate grasslands and cold deserts and semi-deserts.

There is potential for new biodiversity World Heritage sites in the four biodiversity hotspots, where currently have no representation on the List: Chilean Winter Rainfall and Valdivian Forests (Argentina and Chile); Irano-Anatolian (Armenia, Azerbaijan, Georgia, Iran, Iraq, Turkey and Turkmenistan), the Göreme National Park World Heritage site in Turkey falls into this hotspot but is not listed under biodiversity criteria; Madrean Pine-Oak Woodlands (Mexico and United States), the Monarch Butterfly Biosphere Reserve World Heritage site in Mexico falls into this hotspot but is not listed under biodiversity criteria; Mountains of Central Asia (Afghanistan, China, Kazakhstan, Kyrgyzstan, Tajikistan, Turkmenistan and Uzbekistan).

“Together with other regional gap studies, this work should go a long way in providing continued guidance for the development of the World Heritage List in coming years, further strengthening its contribution to protecting the world’s most important ecosystems and better safeguarding our planet’s natural heritage for future generations,” says Tim Badman, Director of IUCN’s World Heritage Programme.

Two sites from this hotspot (Xinjiang Tianshan, China and Tajik National Park, Tajikistan) have just been declared World Heritage sites.

Another 19 hotspots and one ‘high-biodiversity wilderness area’ have less than 1% of their area in biodiversity World Heritage sites. Hotspots with less than 0.1% coverage are New Caledonia, Succulent Karoo, Philippines and Mediterranean Basin. A further 46 Global 200 terrestrial priority ecoregions, 159 Centres of Plant Diversity, and 136 Endemic Bird Areas do not have a biodiversity World Heritage site.

The study was supported by the German Federal Agency for Nature Conservation (BfN) with funds from the Federal Ministry for the Environment, Nature Conservation and Nuclear Safety (BMU). Additional support was provided by the MAVA Foundation.

For more information contact: Yichuan Shi, email: